
Z02-powered HGS-HIRe power week:
Clean software development
→ aimed at Ph.D. students and young postdocs

From 6 to 10 October 2025

Dr. Alessandro Sciarra†
Trainer

Dr. David A. Clarke‡
Trainer

Abstract
Modern computational physics is numerically more and more demanding and the complexity of
both algorithms and architectures has constantly grown over the last decades. This has naturally
led to the development of large codebases (10k+ lines of code) in several research groups over
multiple generations of PhD students and postdocs. Unless properly handled, the standard
scenario is that software maintenance and even reading cost naturally explodes and within
few years (if not months) it becomes terribly expensive if not impossible to make changes or
implement new features.

Academic curricula only started to adapt to this rapid evolving landscape in the last years and
this change will take time. The only possibility for young scientists is then to learn while dealing
with the large codebases in their new group e.g. during their PhD and the pressure to focus on
physics and obtain results often reduces the time to invest in learning alone to the bare minimum.
Furthermore, technicalities often come first and, for instance, the used language syntax or the
hardware architecture are needed to be studied at the beginning in order to be able to understand
the existing code and to undertake some programming task. Effort to keep code quality high is
often postponed, making one of the biggest mistake for the long-term software sustainability:
«To go fast, you go well» – R.C. Martin.

In this pedagogical and exciting training, general principles will be explored in order to let
participants easily improve their knowledge and toolkit and, in turn, their daily coding quality.
Using many examples, the idea of clean code and clean testing will be introduced, several aspects
discussed and participants will immediately apply what learnt. Most of the time will be spent in
training sessions letting participants not only exercise on the discussed topics, but also practice
techniques like pair programming and test/behaviour driven development.

As much as time will allow it, different topics naturally belonging to software development will
be touched (e.g. use of a versioning control system, semantic versioning, branching patterns,
profiling and optimising).

After this training, which is offered requiring as few as possible prerequisites and in the spirit
of life-long-learning, participants will be able to write code from a totally new perspective and,
at least, will be aware of what should be done to work in a sustainable way and what it would
instead happen when choosing the quick-and-dirty way.

†sciarra@itp.uni-frankfurt.de
‡clarke.davida@gmail.com

1



Course information

Thematic focus
The training is tailored to PhD students doing computational science and, hence, have to deal with
medium to large software on a regular or even daily basis. The main focus is clean software development.
The ideas of clean code and clean testing will be introduced in the very beginning of the course and will
be explored more and more throughout the week, enriching the participants section after section.

Prerequisites
It will be assumed that you have been (or in the best case will be) working with software for a while.
Basically, the only prerequisite is some experience in coding on which you will reflect during the course.
The programming language used is not (too) relevant, because most of ideas and principles discussed
during the week apply to all of them. However, you should have in your toolkit some program to do
rudimentary plotting as well as know some scripting language to deal with data files in a basic way.
Python serves both aspects very well, but you will not be forced to use it.

If you are totally new to Git, you should take some time and read through some introduction to it. You
can pick your favourite tutorial online or read through the first two parts of this trilogy m (the third part
will be discussed in the training).

Requirements
Every participant is assumed to fulfil the following requirements.

1. Bring a laptop to work on during the training1.
2. Choose a piece of your own software and have it ready. This has to be in a language known to

the participant and, ideally, it is either a small program or a stand-alone-working part extracted
from a larger project. As rule of thumb, such a small program should be a few hundreds of lines
long, but not longer of ~1000 lines.

3. Have a computing environment ready to be used. This might be your own laptop or a remote
machine (for instance the own university computer e.g. reached over ssh). In particular, every
participant should be able to edit, possibly compile and run their own chosen piece of software.

4. Have Git installed in your computing environment. It is likely that Git is already installed on
your operating system. In order to check it, try to type git version in your terminal and see if the
command is recognised. In the unlikely case Git is not installed, you can follow this nice guide m
in order to install it.

5. Have a GitHub account. You might already have one, that’s fine. If not, create one m for the
power week (you might need it in your future at some point anyhow). During the training, we will
collaborate in a private repository, so do not worry about making private work public.

Registration
Registration is simply done by email to info@hgs-hire.de. Please, specify in the registration email

1. the programming languages you typically use in your work and
2. your GitHub user name.

Further information
This power week has been jointly organized together with the CRC-TR 211 collaboration. In case of a
large request, a waiting list will be established and organisers will consider to enlarge the participants
number, as far as possible.

Timetable
In the following page you find the week timetable.

1If you do not have one, please contact the trainer.

2

https://github.com/AxelKrypton/Git-crash-course
https://github.com/git-guides/install-git
https://github.com/signup


M
on

da
y

6
Tu

es
da

y

7
W

ed
ne

sd
ay

8
T

hu
rs

da
y

9
Fr

id
ay

10
9:

00

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

A
rr

iv
al

to
lo

ca
tio

n

Fo
rm

al
we

lc
om

e

D
ep

ar
tu

re
fro

m
lo

ca
tio

n

Lu
nc

h

D
in

ne
r

Lu
nc

h

D
in

ne
r

Lu
nc

h

D
in

ne
r

Lu
nc

h

D
in

ne
r

Lu
nc

h

In
fo

rm
al

di
sc

us
sio

n
O

ffi
ce

ho
ur

In
fo

rm
al

di
sc

us
sio

n
O

ffi
ce

ho
ur

In
fo

rm
al

di
sc

us
sio

n
O

ffi
ce

ho
ur

W
el

co
m

e,
we

ek
se

tu
p

an
d

C
le

an
co

de

Sp
lit

tin
g

&
Pi

ck
-u

p

C
le

an
te

st
in

g
(I

)

Br
ea

k

Te
st

in
g

fra
m

ew
or

k
an

d
w

rit
e

Fu
nc

tio
na

lt
es

ts

Su
m

up
an

d
cl

os
in

g

N
am

es
,c

om
m

en
ts

,…
D

oc
um

en
ta

tio
n

C
le

an
te

st
in

g
(I

I)
C

la
ss

,f
un

ct
io

ns
,I

O
SP

Br
ea

k

R
en

am
e!

C
he

ck
co

m
m

en
ts

A
dd

te
st

s
fo

r
fu

nc
tio

n
A

pp
ly

IO
SP

C
le

an
te

st
in

g
(I

II
)

Im
pr

ov
e

yo
ur

te
st

s
A

dd
m

or
e

te
st

s

Br
ea

k

D
RY

,K
IS

S,
YA

G
N

I

R
ef

ac
to

rin
g!

Su
m

up
an

d
cl

os
in

g

G
it

in
re

al
lif

e

Br
ea

k

C
le

an
te

st
in

g
(I

V
)

T
D

D
liv

e
de

m
o

Pr
ac

tic
e

T
D

D
(I

)

Br
ea

k

Pr
ac

tic
e

T
D

D
(I

I)

G
itH

ub
PR

Su
m

up
an

d
cl

os
in

g

D
at

a
va

lid
at

io
n

an
d

da
ta

cl
ea

ni
ng

N
ew

pr
oj

ec
t

(I
)

Br
ea

k

N
ew

pr
oj

ec
t

(I
I)

St
at

ist
ic

al
an

al
ys

is
an

d
pl

ot
tin

g

N
ew

pr
oj

ec
t

(I
II

)

Br
ea

k

N
ew

pr
oj

ec
t

(I
V

)

Su
m

up
an

d
cl

os
in

g

C
od

e
re

vi
ew

R
ev

ie
w

pr
oj

ec
t

fro
m

an
ot

he
r

gr
ou

p

Br
ea

k

Fi
na

lis
e

re
vi

ew

Su
m

up
re

vi
ew

s

Fe
ed

ba
ck

an
d

cl
os

in
g


